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1 RELATED WORK

A number of efforts have been undertaken to integrate GPU
functionality into an HPC environment, with modifications
at the application, programming model, and library levels
to account for a discrete GPU main memory space. Work
related to MVAPICH [1], [2] is discussed in Section 2.3 of
the Main Material.

At the application level, algorithms that use both MPI
and GPUs, such as Jacobsen et al.’s flow computation algo-
rithm [3], are modified to allow efficient GPU computation,
for example, changing the problem space partitioning to
benefit GPU access patterns. MPI datatypes differ from
these specialized data structures in that the datatypes ef-
ficiently encode a subset of the data structures used, for use
in communication and I/O routines.

At the programming model level, the asymmetric dis-
tributed shared memory model provides a single GPU
address space across a cluster, while leaving GPUs aware of
only their local memory space [4]. The consistency model
is designed for and allows operating and processing on the
shared address space in contiguous chunks with memory
coherence; it would have to become more complex in order
to enable the transfer and consistency of noncontiguous data
or partial data within a contiguous buffer.

Zippy [5] combines the message-passing and shared-
memory models (based on Global Arrays) and provides
a single address space for all GPUs in the cluster, using
MPI as its backend. Zippy works specifically on multidi-
mensional array-based data, so our work is applicable both
to representing an area that needs to be transferred (such
as noncontiguous array boundaries) and to subsequently
packaging that data efficiently.

At the library level, Distributed Computing for GPU
Networks (DCGN) [6] extends MPI and utilizes signal-
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ing/polling mechanisms to allow for GPU-sourced commu-
nication. It also uses existing MPI libraries as a backend,
meaning our work can directly benefit theirs. Unfortunately,
given the current architectural constraints, the signaling and
polling operations are cycle-consuming and lead to high
latencies in GPU-sourced communication routines.

Similarly, cudaMPI [7] works on top of MPI, focus-
ing on performance implications of different memory con-
figurations, such as pinned vs. not pinned. Specifically,
Lawlor focuses on the application of the latency/bandwidth
performance model, which comes into play when doing
anything GPU-related that tends toward high-latency, high-
bandwidth operations. Additionally, Lawlor briefly discusses
noncontiguous memory transfer onto the CPU, but only as
an application-specific column-vector transfer, and does not
take into consideration MPI datatypes in general. Similar to
our method, however, he issues a kernel to pack this data;
our work thus directly applies to his framework.

2 ADDITIONAL EXPERIMENTS

2.1 Packing Comparison with Type-Specific Ker-

nels

Figure 1 shows the performance of generalized packing
relative to hand-optimized packing kernels. A summary of
these results can be found in Section 4.2 of the Main
Material.

2.2 3-D Plane Transfer

For three-dimensional arrays, a single vector type can be
used to send each face of the array: the fully contiguous X-Y
face, the contiguous-per-row X-Z face, and the noncontigu-
ous Y-Z face. Together, these operations represent the com-
munication step of a variety of matrix algorithms, such as
stencil computation. Table 1 shows the transfer rate of each
face for different array sizes, using the packing kernel and
CUDA’s two-dimensional memory copy. The results largely
agree with those previously presented; contiguous chunks
of data are more effectively transferred by using built-in
CUDA copies (though there is only an approximately 10–
15% difference), while packing is dramatically better for
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Fig. 1. Hand-coded packing kernel times and relative generalized pack performance.

getting noncontiguous data. Note that the CUDA memory
copy seems to degrade in performance for the X-Z plane
transfer in the 512 × 512 × 512 case. We cannot currently
explain this behavior.

TABLE 1

Two-dimensional plane transfer to CPU versus

cudaMemcpy2D.

Throughput (MB/s)
Size Face Pack CUDA

64× 64× 64
X-Y 923 1062
X-Z 937 1097
Y-Z 865 186

128× 128× 128
X-Y 2573 2854
X-Z 2554 2868
Y-Z 2131 209

256× 256× 256
X-Y 4567 4842
X-Z 4553 4845
Y-Z 3728 216

512× 512× 512
X-Y 5790 5841
X-Z 5792 1645
Y-Z 4816 218

2.3 Noncontiguous Packing Performance by Com-

ponent

The performance metrics in Section 4.2 of the Main Ma-
terial leaves out some key information about our packing
methodology. For instance, what are the costs of PCIe
transfers? What is the effect of memory layout on the overall
performance? To answer these questions, Figure 2 shows
packing performance under three contexts: the full context
as presented in Section 4.2 of the Main Material, the com-
pletion time of packing into GPU memory (avoiding PCIe
transfers), and the datatype traversal time. Note that the
packing operations for small messages are latency bound,
meaning the issuing of the packing kernel is the dominant
cost.

For medium-sized and large-sized messages, the effi-
ciency of the traversal operation is largely dependent on

the complexity of the type used. For instance, the vector
and contiguous types, when only traversing the type,
complete quickly because of the simplicity of the traversal
logic. The subarray type, however, suffers in perfor-
mance because of the additional logic and integer com-
putation compared with types such as vector necessary
to represent and pack a subarray of arbitrary dimension.
For cases such as a four-dimensional subvolume, however,
multiple vectors would have to be used, which would
reduce performance, so one cannot merely replace the types
and get higher performance.

For types with variable-length parameters, such as in-
dexed, the problem becomes memory-bound with respect
to the input type and sees less performance on the traversal.
The indexed type, performing a binary search, must
access GPU main memory for every point retrieved, al-
though coalescence between adjacent threads in the search
helps reduce the cost. Note that the worst case for in-
dexed occurs with a large set of approximately uniform
blocklengths, maximizing the size of the variable-length
parameter space as well as branch divergence in the search.
Similar trends are seen in the struct type, although to
a higher degree because each block is a separate datatype
(see Table 1 in the Main Material). The cost of performing
the binary search for these types can be seen by comparing
the indexed and indexedblock types. Specifically, the
binary search implementation of indexed type traversal
causes significant overhead, although for packed buffer sizes
less than 64 KB the absolute overhead is no more than 9
microseconds.

The impact of the read/write stage of packing on per-
formance is determined by the encoded data layout. The
best example is shown in the indexed and vector
types. With a small blocklength and thus high noncontiguity,
reading the values is the bottleneck of the datatype process-
ing. With a large blocklength and thus a higher degree of
contiguity, the reading is an efficient process because of the
much higher degree of coalescence. If the type has variable-
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Fig. 2. Packing time, by component. “Comp”: traversing the type, computing input/output offsets. “Mem”:

performing the read/write operation at the end of the traversal operation. “Xfer”: sending the packed data across

the PCIe bus.

length parameters, then the traversal is the primary cost, but
significant overhead can still be seen when packing highly
noncontiguous data, such as with the indexed type with
8-byte blocks.

Adding the PCIe bus activity into the packing adds
overhead and ultimately bottlenecks the faster packing oper-
ations for larger buffer sizes. Zero-copy keeps the overhead
small for medium-sized buffers. As mentioned in Section 4.1
of the Main Material, zero-copy is not used in the struct
type, causing a higher relative performance degradation than
seen in the other types because of the serialization of the
packing and PCIe operations.

2.4 Packing Performance: Efficacy of Zero-copy

As the usage of zero-copy is prevalent throughout our
experimentation as an optimization of GPU-to-CPU data
movement, we performed additional benchmarks to de-
termine the performance benefits of it. Figure 3 shows
two metrics, the completion time of our packing method
without zero-copy enabled and the relative completion time
of packing with zero-copy enabled. As can be seen, the
completion time with zero-copy is roughly 60–75% of the
time without, corresponding to a speedup of 1.33 to 1.66.
As mentioned in the Main Material, the performance benefit
is the result of implicitly pipelining the packing and PCIe
operations through zero-copy.

3 EXTENDED DISCUSSION

3.1 Choosing An Appropriate Data Movement

Methodology

As observed in the Main Material, a large number of
factors must be considered when determining whether, for
particular memory layouts and levels of system activity, to
perform kernelized packing, type-specific hand-optimized
versions, or CUDA DMA. This determination would ideally
take into account the degree of noncontiguity of the data,
the availability of higher-performing type-specific kernels or
CUDA alternatives, and awareness of competing operations
for limited GPU resources. For example, CUDA DMA can
be used in place of the generic packing algorithm for a
single vector type (e.g., CSvec) by merely analyzing the
strides/blocklengths for CUDA-optimized parameters.

For GPU-aware datatype processing implementations, we
expect that the simplest and most efficient way to track this
information is as the datatype is being built, with small
checks at communication time when the buffer address is
known. With small additions to the datatype data structures,
one can easily track most of the information necessary
to make an informed decision. For example, flags can
be used in the vector type representation to flag the
type as suitable for DMA based on the blocklength and
stride, the performance of which we have shown to be
sensitive to changes in the parameters. At communication
time, unaligned buffers can override the flag. Determining
whether subarrays and vectors can be packed using a



4

 10

 100

 1000

64 256 1K 4K 16K 64K256K 1M 4M

T
im

e
 (

M
ic

ro
se

co
n

d
s)

Packed Buffer Size (Bytes)

Pack Time without Zero-copy

contig
vector-8

vector-128
subarray

 10

 100

 1000

64 256 1K 4K 16K 64K256K 1M 4M

T
im

e
 (

M
ic

ro
se

co
n

d
s)

Packed Buffer Size (Bytes)

Pack Time without Zero-copy

idxblock-8
indexed-8

idxblock-128
indexed-128

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

64 256 1K 4K 16K 64K256K 1M 4M

N
o

rm
a

liz
e

d
 T

im
e

Packed Buffer Size (Bytes)

Pack Time with Zero-copy
Relative to no Zero-copy

contig
vector-8

vector-128
subarray

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

64 256 1K 4K 16K 64K256K 1M 4M

N
o

rm
a

liz
e

d
 T

im
e

Packed Buffer Size (Bytes)

Pack Time with Zero-copy
Relative to no Zero-copy

idxblock-8
indexed-8

idxblock-128
indexed-128

Fig. 3. Time-to-CPU packing time of the packing kernel, with and without zero-copy.

CUDA two- or three-dimensional memory copy is a simple
matter, and sizes can be checked against known or heuristic
values to tradeoff kernel latency and DMA efficiencies.
Moreover, composed types are likely to be more efficiently
packed by using a kernel (to avoid latency from multiple
kernel and/or DMA issuance), but a hybrid implementation
where processing a “parent” datatype can involve issuing
multiple packing kernels for appropriate child datatypes is
also an intriguing possibility; further research is necessary
to evaluate the efficacy of such an approach.

The changes described in the previous paragraph touch
on all aspects of datatype processing. A much simpler
first step to make these choices is to allow the user full
discretion in what processing strategy is used. The MPI
standard allows hints in the form of attributes to be passed
to datatypes, which were used in the recent MPI-ACC
work [8] to eliminate the overhead of using CUDA UVA.
This attribute interface (MPI_Type_create_keyval
and MPI_Type_set_attr), as in the MPI-ACC work,
can be easily used by the MPI runtime to specify what
packing strategy to pursue (DMA vs. kernel). Thus, if an
application is using double-buffering to perform computa-
tion during communication routines, the DMA method can
be specified for use in order to avoid kernel starvation.

Handling GPU Resource Contention

As seen in Section 4.4 of the Main Material, the optimal
choice of how to pack GPU data depends heavily on what
other operations are going on in the system. To summarize
the results, starvation can occur for both compute kernels (if
the issued thread blocks are large enough to occupy GPU
multiprocessors) and PCIe transfers using the same lane.

With resource contention, the best case occurs when we
are working with types such as vector or two- or three-
dimensional subarray. CUDA and OpenCL allow for
the transfer of regularly strided two- and-three-dimensional
subarrays, in addition to contiguous buffers, avoiding multi-
processor usage. While useful for the common case of array

processing on the GPU, it is nevertheless a special case that
cannot be relied on for all applications.

When the datatype is nontrivial and resource contention
is preventing a packing kernel from being run, a number
of methods can be used to get the data onto the CPU. The
two simplest ones are transferring by extent and transfer-
ring point by point, both of which are highly inefficient.
Transferring the extent of a datatype wastes bandwidth and
still requires packing on the CPU end. Transferring point
by point suffers from the high latency of initiating copies
from the CPU. Both have the potential for interfering with
user kernels that rely on host-device transfers. Performing
some combination of the two, similar to data sieving in
the ROMIO MPI-IO implementation [9], would need more
complex processing and memory management on the CPU
side and would still have the problems of both methods,
albeit reduced in severity. Another option is to devote a
persistent kernel for use by MPI operations and utilize sig-
naling and polling to initiate packing, similar to Stuart and
Owens’s implementation of message passing on many-core
processors [6]. However, since we show latency costs to be
extremely important when performing the packing operation
and since their method produced an increase in these costs,
we do not consider this approach (see Section 4.2 of the
Main Material and Section 2.3).

Unfortunately, no way currently exists within the CUDA
or OpenCL interfaces to query the level of resource uti-
lization on the GPU aside from high-level utilization (pro-
vided through the NVIDIA driver), complicating the se-
lection of a globally efficient strategy without application-
specific knowledge, which can similarly be provided by
users through datatype attributes. Since the overarching
goal of this research is to provide transparent GPU data
management from within MPI, solutions such as hijacking
user kernel calls to collect statistics and infer utilization are,
while interesting, not addressed by this paper.
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3.2 Further Optimizations

While we did not explore pipelining the communication
process in the Main Material (our benchmarks were bot-
tlenecked by PCIe latency for small messages and network
bandwidth for large messages), our packing methodology
can provide such capability in future work. Given a pipeline
unit of an arbitrary size, we can modify the point-to-thread
mapping by simply offsetting the elements to read based
on the amount of pipelined data read. Given the existing
datatype encoding, computing the number of elements to
fit in a pipeline unit can be easily done on the host, in a
top-down style similar to Algorithm 1 of the Main Material.
This functionality is important for systems with increasingly
high network capabilities, and our design is capable of
performing pipelining with little change to the underlying
methods.

In order to improve the overall communication process
when GPUs are involved, three versions of GPUDirect
currently are available. The first version for use with In-
finiBand clusters allows the CPU to pin the same physical
memory to be used by both InfiniBand drivers and CUDA,
hence avoiding an internal memory copy on the CPU in
communication. This optimization, used in our presented
results, is orthogonal to our packing methodology. The
second version allows direct GPU-to-GPU communication
for GPUs that are on the same system/PCIe bus, never
reaching CPU main memory. The third version allows
remote direct memory access (RDMA) to and from GPUs
in the same network (the network card must on the same
system/PCIe bus as the corresponding GPU). The second
and third optimizations are also orthogonal to our packing
methodology, but with an important implication for our
method: the packing operation would now pack into GPU
memory rather than CPU memory.
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